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Abstract

This article reports on the potential of application of LES in the calculation of turbulent two-phase flows, in the case
where each phase is resolved and interfaces remain much larger than the mesh size. In comparison with single-phase flow,
successful application of LES to resolve two-phase flow problems should account for the complex interaction between tur-
bulence and interfaces. Non-linear transfers of turbulent energy across the interface have to be accurately modeled. The
derivation of the complete filtered two-phase flow governing equations has been formulated to deal with turbulence at
the interface in a comprehensive and practical way. Explicit filtering of 2D direct numerical simulations has been employed
to evaluate the order of magnitude of the new subgrid contributions. A parametric study on the academic test case of two
counter-rotative vortices and a more complex test case of phase inversion in a closed box have been utilized to perform an
order of magnitude analysis of different transport mechanisms. Important features of turbulent energy transfer across the
interface have been discussed. Analyses of the numerical results have been conducted to derive conclusions on the relative
importance of the different subgrid scale contributions, and modeling issues and solutions are provided.
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1. Introduction

Many industrial and environmental applications involve high Reynolds number turbulent multiphase
flows. Examples include spray formations, oil transportation, sea aerosol formation and many others. A great
deal of research efforts has been oriented towards the numerical modeling of multiphase turbulent flows.

The great majority of numerical computations have adopted Reynolds Averaged Navier–Stokes (RANS)
modeling. Classical single-phase turbulence models have been used in one or in the two phases without direct
consideration of the influence of the multiphase topology of the flow on the turbulence behavior. Sato and
Sekoguchi (1975) derived a mixing length model thanks to a void fraction consideration for bubbly channel
flows, by splitting the turbulence into shear and multiphase induced turbulence. Some interesting comparisons
between classical RANS modeling for two-phase flows have been reported for instance by Homescu and
Panday (1999) for condensation on a horizontal tube.

Large eddy simulation (LES) has been also utilized for multiphase flow calculations. A quite large amount
of these works deal with particles laden flows or sprays, involving particles even smaller than the Kolmogorov
scale (see for instance the works of Boivin et al., 2000; Eaton and Fessler, 1994; Elghobashi et al., 1984; Lain
et al., 2002; Menon et al., 1996; Squires and Yamazaki, 1995). Very interesting advances have been made in
this scope, that is in the case of one of the two phases is very dispersed, and no large inclusion is present. An
other very studied scope is the case of indeformable free surface of an open channel flow. See, e.g., the descrip-
tion of the near free surface turbulence that Calmet and Magnaudet (2003) deduced from their LES and the
subgrid scales modeling of Shen and Yue (2001). In all these precedent cases just one of the two phases is
resolved and there is no really two-way coupling between each phase and the interface. Our purpose deals
rather with the less explored field of deformable interfaces and LES, including interfaces much larger than
the mesh size. In term of resolution, that means the interfaces are mainly resolved, whereas not perfectly,
and at least a part of the turbulence field is subgrid. This problem is quite different, because both phases
can be turbulent, and turbulent energy exchange between the two phases may occur. Christensen and Deig-
aard (2001) and Watanabe and Saeki (2002) adopted a standard LES model coupled with a Volume of Fluid
(VOF) free surface approach for modeling wave breaking. Moreover, Lakehal et al. (2002) derived a subgrid
scale model based on the analytical analysis of Drew and Lahey (1987) on the forces acting on a sphere and on
the scale similarity principle of Bardina et al. (1983). However, in the above-mentioned models, the impact of
the multiphase topology of flow on the turbulent characteristics has never been carefully studied, and the mod-
eling (RANS or LES) is mainly based on analytical considerations. More precise studies on the effect of the
dispersed phase on the turbulence evolution are expected to validate the subgrid scale or the Reynolds mod-
eling of turbulence–interface interaction.

For better understanding of these phenomena, Direct Numerical Simulation (DNS) of multiphase flow has
been carried out. Some interesting two-dimensional DNS of bubbly flow have been presented by Esmaeeli and
Tryggvason (1996), Esmaeeli and Tryggvason (1998, 1999). They studied the relative displacement of an array
of slightly deformable bubbles at low Reynolds numbers and show the effect of the bubble wake induced tur-
bulence on the energy spectrum. Fulgosi et al. (2003) used DNS to calculate a sheared air–water flow on a
slightly deformable interface. The interest was focused on the effect of the moving interface on the turbulence
of the gas phase. They observe that the moving interface modifies the turbulent behavior in comparison with a
solid wall. They reported a reduction of the classical anisotropy and an increase in turbulent transfer due to
the surface. Experimental studies have also confirmed the strong turbulence–interface interaction. For
instance, Lance and Bataille (1991) observe a modification of the classical energy spectra for sufficiently high
void fractions. These works enlighten the importance of the turbulence–interface interaction for the phenom-
enology of turbulence in two-phase flows dynamics.

The objective of the present work is twofold: to formulate in a convenient way the theoretical basis of the
spatial filtering of the conservation equations in the framework of multiphase flows with large (i.e. much larger
than the mesh size) deformable interface, and to provide a sharp description of the unresolved small scale con-
tributions in the case of LES or RANS modeling, through the examples of interaction between turbulence and
deformable interfaces. The critical and peculiar phenomenon of two-phase flows turbulence is the modification
of the interfacial transfers. These transfers are of great importance, because they interact at once with the
dynamic of the bubble and with the heat transfer (and then the phase change). Thus, we wish to suggest a
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new strategy to analyze the two-way coupling between turbulence and interfaces, in focusing on the subgrid
transfers through the interface. In this scope, the fundamental cases of vortex–bubble interaction and of the
phase-inversion in a closed box have been studied to draw conclusions on the reciprocal effect of the turbu-
lence action on interfaces. These two cases have been carefully selected in order to cover a large range of appli-
cations for two-phase flows with large interfaces.

The present article has been organized as follows: Section 1 focuses on the mathematical formalism of the
filtered system of multiphase equations. A general formulation dedicated to LES or RANS calculation is pro-
vided, and different ways of writing the system of equations are discussed. In Section 2, new terms resulting
from this formulation have been identified and discussed in the case of RANS or LES modeling. Scopes for
further studies on closure models have been discussed. The numerical methods are shortly described in Section
3. Section 4 presents the two test cases dedicated to the impact of two counter-rotating vortices with a bubble
and to the phase inversion in a closed box. Some DNS results and phenomenological analysis of the two aca-
demic configurations are provided, in particular in terms of kinetic energy distribution. In Section 5, filters of
different sizes are applied to the test cases in order to evaluate the subgrid contributions. The different contri-
butions arising in the LES equations are compared and highlight the modeling requirements of the subgrid
contributions. Finally, classical one-phase closure models are tested against the equivalent subgrid contribu-
tions. Particular features of the LES for two-phase flows and perspectives are finally drawn.
2. Mathematical formalism

Expecting to lead numerical experiments of turbulent free surface flows, our first aim is to envisage the
motion equations for multiphase flows by carrying out, in parallel, spatial filterings associated to both turbu-
lence (see Sagaut, 2003) and phase presence (see Drew, 1983; Magnaudet, 1997). To perform this modeling, we
need a completely general formulation of the filtered equations. Many authors have worked on a statistical or
LES formulation of the equations. The mathematical formalism used in this paper issues from the work of
Ishii (1975) and is called the two-fluid model. In this formulation, the exact interaction between the phases
is not explicitly expressed but modeled in the form of an equivalent term. Magnaudet (2000) proposed a more
general formulation. However, they considered some subgrid scale terms as negligible. In this study, we for-
mulate turbulent and interface contributions resulting from the filtering and averaging procedures.

2.1. Unfiltered equations

In a multiphase flow consisting of k phases, let us denote the domain occupied by the kth phase as Dk. The
most general formulation of conservation of mass and momentum for each phase is given by

(1) Mass:
oqk

ot
þr � ðqkukÞ ¼ 0 ð1Þ
where q accounts for the density, u for the velocity and t for the time.
(2) Momentum:
oqkuk

ot
þr � ðqkuk � uk þ pk IdÞ � qkg ¼ r � sk ð2Þ
where g is gravity, Id stands for the identity tensor, and sk is the deviatoric stress tensor, defined by
sk ¼ lk Sk � 1

3
trðSkÞ Id

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sk
D

ð3Þ
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where tr accounts for the trace of a tensor and S is the deformation rate:
S ¼ ruþrTu ð4Þ

It is worth noting that in the most general case, the interface has to be considered as a material surface (in the
presence of surfactants) and thus has its own density and momentum. However, in this work, we assume that
the density of the interface is always zero. Therefore, the following so-called jump conditions can be applied
(see Delhaye, 1974)

(1) Mass: The mass transfer _m of the kth phase at the interface is defined by
_mk ¼ qkðuk � W Þ � nk ð5Þ

where n accounts for the outgoing normal at the interface. The mass balance for all phases can then be
written as
X

k

_mk ¼
X

k

ðqkðuk � W Þ � nkÞ ¼ 0 ð6Þ
where W is the speed of displacement of the interface.
(2) The balance of momentum at the interface reads:
X

k

ðuk _mk � nk � ð�pk Idþ skÞÞ ¼ rnkrs � nk �rsr ð7Þ
where $s is the surface derivative operator along the interface and r is the associated surface tension.

To work with this formalism, it is convenient to extend the definition of each phase to the whole domain (in
order, for instance, to use non-conditional boundary conditions for each phase). In order to properly define
these extensions, we have to introduce a definition of the interface of the kth phase, as a function of position
and time. The interface corresponds to a n � 1 dimensional restriction of the n dimensional space and can then
formally be defined as a function fk of space and time as follows:
x 2 the interface() f kðx; tÞ ¼ 0 ð8Þ

The function fk is chosen in order to respect the inequalities:
x 2 the kth phase() f kðx; tÞ > 0

x 62 the kth phase() f kðx; tÞ < 0
ð9Þ
The sharp phase indicator vk can then be defined as
vk ¼ h½f k� ð10Þ

where h is the Heaviside function.

This indicator has several useful properties:
X
k

vk ¼ 1 ð11Þ

vmvn ¼ dmnv
m ð12Þ

rvk ¼ �nkdi ð13Þ

Furthermore, vk follows an evolution equation:
ovk

ot
� W � nkdi ¼ 0 ð14Þ
where di is defined as the Dirac function centered on the interface. Each interface is considered as the inter-
section surface between different subdomains Dk. The behavior of each phase for points near the boundary of
the subdomains Dk can be easily described using di. Note that reciprocally, di can be expressed as a function of
vk and nk:
di ¼ �nk � rvk ð15Þ
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Using Eqs. (6)–(14), the governing Eqs. (1) and (2) for the phase-weighted variables can be written as

(1) Mass:
ovkqk

ot
þr � ðvkqkukÞ ¼ qkðW � ukÞ � nkdi ð16Þ
(2) Momentum:
ovkqkuk

ot
þr � ðvk½qkuk � uk þ pk Id� sk�Þ � vkqkg ¼ ðqkuk � ðW � ukÞ � pk Idþ skÞ � nkdi ð17Þ
The jump conditions defined by Eq. (5) appears explicitly in Eqs. (16) and (17).
The system of governing equations defined by Eqs. (16) and (17) has to be closed owing to thermodynamic

relations. The dynamic viscosity l can be classically assumed as a function of temperature only.
2.2. The exact one-fluid formulation for multiphase flows

A one-fluid formulation for solving multiphase flows can be obtained by introducing the exact one-fluid
variable that is defined as the sum of the phase indicator weighted phases:
/ ¼
X

k

vk/k ð18Þ
Summing Eqs. (16) and (17) on all the phases of the flow, the so-called one-fluid mass and momentum con-
servation equations are written as

(1) Mass:
oq
ot
þr � ðquÞ ¼

X
k

qkðW � ukÞ � nkdi ð19Þ
This equation can be simplified using mass jump condition (6) as follows:
oq
ot
þr � ðquÞ ¼ 0 ð20Þ
(2) Momentum:
oqu
ot
þr � ðqu� uþ p Id� sÞ � qg ¼

X
k

ðqkuk � ðW � ukÞ � pk Idþ skÞ � nkdi ð21Þ
Using the momentum jump condition (7), Eq. (21) becomes
oqu
ot
þr � ðquuþ p Id� sÞ � qg ¼ rs � nkrnkdi �rsrdi ð22Þ
(3) The transport equation for v does not give further information, since the equality
P

kðnkdiÞ ¼ 0 is
obvious.

The one-fluid formulation has been introduced by Kataoka (1986). It allows the implementation of classical
one-phase numerical tools for solving multiphase flow problems.
2.3. Filtering and averaging point of view

The previous set of unfiltered equations cannot be used in discrete form unless the resolution scale of the
mesh is smaller than the Kolmogorov scale, which is unsuitable for practical applications. The number of
degrees of freedom is commonly reduced using filtering or averaging based numerical approaches. In order
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to derive a general formalism that is applicable for both approaches, the statistical average or spatial filtering
operator is denoted as G. Filtering or averaging over discontinuities is a bit ambiguous. As showed by Sagaut
and Germano (2005), this process induces a spurious term due to the jump of the filtered quantities. However,
many of the numerical methods commonly used to simulate two-phase flows (like Volume of Fluid, Front-
Tracking or the Level Set methods) work with interfaces crossing the cells of the mesh. It means that, if no
specific treatment is adopted, the jump condition is also smoothed on at least the size of the cells. It is to repro-
duce this phenomenon we decide to apply the filter over the discontinuity and not only on each phase
independently.

The filtered velocity field is then given by
uðx; tÞ ¼ G H u ð23Þ
The properties common to the filtering and averaging approaches have been used to obtain a general filtered/
averaged formalism.

In LES modeling, Eq. (24) represents the low-pass frequency filtering of the field (see, Sagaut, 2003, for a
review). The filtering operation of u(x, t) (also called for convenience volume filtering process in the following),
for example, is defined on a calculation domain X by
uðx; tÞ ¼ G H u ¼
Z t

�1

Z
X

GðDðx; tÞ; x� x0; t � t0Þ:uðx0; t0Þdx0 dt0 ð24Þ
where G is a formal operator, D is the cutoff lengthscale of the filter, and X � R3.
We assume that G commutes with the spatial and time derivation. It is well known that this property is not

exactly verified in the inhomogeneous direction of the flows. It would be interesting to verify the order of the
error involved in the case of two-phase flows.

On the other hand, the operator G in RANS modeling corresponds to a statistical average of the field (see,
e.g., Piquet (1999) for a review). The filtering operation of u(x, t) is expressed as
uðx; tÞ ¼ G H u ¼ lim
N!þ1

1

N

XN

p¼1

upðxi; tÞ ð25Þ
where {up,p = 1,N} represents the value of u for a given pth try of the same flow (i.e. with all temporal or
spatial boundary conditions statistically equal).

It is well known that RANS modeling produces a simpler mathematical formulation than LES. Indeed, the
properties of the filtering operator are valid for the statistical average and several other properties are specific
to the RANS averaging operator. To keep this work as general as possible, the operator will be applied to the
set of Eqs. (16) and (17).

The commutation between the derivative and the filter is widely assumed in single-phase LES (see Sagaut,
2003). Let us assume the same for multiphase flows. Such assumption has to be verified, even if, at least the-
oretically, the commutation error depends more on the topology of the mesh than on the characteristics of the
flow (see the works of Dakhoul and Bedford (1986a,b) and Vasilyev et al. (1998), for instance, on non-homo-
geneous filtering).

Clearly, the filtering of the phase indicator function is of great importance. We set
ak ¼ vk ð26Þ
It is worth noting that ak is a ‘‘smooth’’ indicator function and no longer satisfies property (12). That is
alam 6¼ 0
because a varies continuously from 0 to 1.
However, property (11) is always valid, such that
X

k

ak ¼ 1 ð27Þ
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The resolved normal vector can be defined as
bnk ¼ � rak

krakk if krakk 6¼ 0

0 otherwise

8<: ð28Þ
A formal definition for the ‘‘resolved filtered Dirac function’’ bdi is given as
bdi ¼ k bnkk ð29Þ
Furthermore, following Favre et al. (1976), the ‘‘phase-weighted’’ filtering of the variable /k is defined as
akf/k ¼ vk/k ð30Þ
Under this assumption, the filtered set of equations for multiphase flow reads:

(1) Mass:
oakfqk

ot
þr � ðak gqkuk Þ ¼ qkðW � ukÞ � nkdi ð31Þ
(2) Momentum:
oak gqkuk

ot
þr � ðak gqkuk � uk þ ak gpk Id � ak esk Þ � akfqk g ¼ ðqkuk � ðW � ukÞ � pk Idþ skÞ � nkdi ð32Þ
(3) The evolution of the phase indicator function has to be added to these three classical equations:
oak

ot
¼ W � nkdi ð33Þ
The non-linear terms have to be modeled as none of them can be directly computed. On the left-hand side of
the equation, phase-weighted non-linear terms are introduced, while on the right-hand side, we retrieve filtered
interfacial terms.

To build a one-fluid filtered formulation, let us define / as the filtering of the one-fluid variable proposed in
Eq. (18):
/ ¼
X

k

vk/k ð34Þ
Using this definition and summing the evolution equations over all the phases, we obtain

(1) Mass:
oq
ot
þr � ðquÞ ¼

X
k

ðqkðW � ukÞ � nkdiÞ ð35Þ
(2) Momentum:
oqu
ot
þr � ðqu� uþ p Id� sÞ � qg ¼

X
k

ðqkuk � ðW � ukÞ � pk Idþ skÞ � nkdi ð36Þ
The quantities arising in the right-hand side of Eqs. (35) and (36) are the overlined counterparts of the jump-
condition quantities defined in Eqs. (6) and (7). Expressions (6) and (7) can then be used to replace the right-
hand-side quantities of the previous equation.

It is worth noting that it can be more convenient to use as unknown the so-called ‘‘Favre average’’, Favre
et al. (1976) (also called in the following mass-weighted filtering) for the velocity field. In this case, a new def-
inition for the filtering of u is employed:
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eu ¼ qu
q

ð37Þ
The discussion about the choice of the best filtering process is widely tackled in the proceedings of Labourasse
et al. (2004), but some complementary issues are presented in the following of this paper. We choose to derive
the two formulation (phase-weighted or not), because the use of the phase-weighted average is not always easy
when two incompressible phases are considered. In this case, the well-known incompressibility constraint for
the filtered field
r � �u ¼ 0 ð38Þ
is always valid, spurious terms appears when using the mass-weighted average, and this constraint becomes
r � ~u ¼ ½q�
�q
ðu � n� ~u � n̂Þ ð39Þ
where [q] accounts for the jump of the density across the interface. The solving of Eq. (39) is far more com-
plicated, and one can prefer using the non-weighted filtering process, unless the additional term arising in the
momentum equation.
3. Closures

The closure of the system is very complicated and makes the thematic of the filtering for multiphase flows
very rich. The closure terms can be classified into three categories as follows:

(i) The ‘‘classical’’ subgrid terms, which account for the effects of subgrid scale correlations on the resolved
flow, and which arise in the equations from the non-linearities. They are common to single-phase turbu-
lence studies, and the large amount of modeling work already done on this field (see, Sagaut, 2003, for a
review) can be partly used. Nevertheless, the hierarchical classification in magnitude of the subgrid scale
contributions proposed by Vreman et al. (1995) and Vreman (1995) (for the momentum equations all
subgrid terms are negligible but the one coming from qu� u) may not be suitable near the interface.
However, all new modeling must tend to classical modeling in the single-phase areas.

(ii) The pure interfacial subgrid terms, which take into account the subgrid contribution of the interface
characteristics to the flow evolution. In the set of Eqs. (35) and (36), these terms appear in the right-hand
side and can be replaced using the jump conditions given by Eqs. (6) and (7).

(iii) The subgrid error committed by using thermodynamical and physical laws to represent a mixed phase
volume of fluid. This problem has been partly tackled by Duquennoy et al. (1999) and Mathieu et al.
(2003) (in particular, with a great contribution to the modeling of the contact lines), but remains mainly
untouched.In the present study, isothermal flows are only considered as a preliminary stage. Therefore,
the influence of the first two subgrid terms (i) and (ii) can be evaluated.

In this work we will focus on the one-fluid model, and all the non-linear terms of the system of equations
(35) and (36) will be written using the resolved variables
s/w ¼ /w� /w ð40Þ

where s/w is the subgrid contribution of non-linearity to the filtered evolution equations, and has to be closed
using the resolved quantities. From now, the subscripts l and r are respectively related to left and right-hand-
side terms in Eqs. (35) and (36). Moreover, when this is necessary, the subscript f is added when using the
mass-weighted filtering process for Eqs. (60) and (61).

Considering the left-hand-side of Eqs. (35) and (36), the following terms have to be modeled:

• Mass:
slqu ¼ qu� q�u ð41Þ
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• Momentum:
4 Fo
slquu ¼ qu� u� q�u� �u ð42Þ
sllS ¼ s� lSD ð43Þ
The use of the filtering variable ~u allows us to avoid the subgrid scale term into the time derivative. The new
non-linear terms that have to be taken into account owing to the non-linear terms in left-hand-side of the
equation are:

• Mass: No more subgrid terms appear in the right-hand-side of this equation.
• Momentum:
sflquu ¼ qu� u� q~u� ~u ð44Þ
sfllS ¼ s� lSD ð45Þ
In the right-hand-side of the equation, the expression of the subgrid terms does not change.
The following observations should be noted:

• These subgrid terms are formally not different from those that can be found in filtering a single-phase flow.
However, the concluding remarks of Vreman et al. (1995) and Vreman (1995) on the order of magnitude of
each of them cannot be used in the case of multiphase flows. Indeed, the term sllS, for instance, is found
negligible in the work of Vreman because of the low variation of l. However, for multiphase flows, l can
vary sharply through the interface, since it depends on the phases that are considered.

• It is interesting to decompose terms (41)–(43) to make the different phases appear. For instance, let us
decompose slqu into k phases:
slqu ¼
X

k

ðvkqkukÞ �
X

k

ðvkqkÞ
X

k

ðvkukÞ ¼
X

k

ðvkqkuk � vkqkvkukÞ �
X
k 6¼l

ðakfqk al eulÞ

¼
X

k

sk
lq �

X
k 6¼l

ðakfqk al eulÞ ð46Þ
The first term on the right-hand side of Eq. (46) is the sum of the classical subgrid terms that exist in each
single-phase flow. The second term is a sum of cross terms, which is a peculiar feature of multiphase flows.

• The time derivatives of the subgrid terms slq appear in the momentum equation. This system is then difficult
to solve directly.

• The use of l, for instance, makes difficult the closure of the equation by the classical thermodynamic laws.
It may be more convenient to write for example the resolved dynamic viscosity bl ¼ lðT Þ.

For the right-hand side of the equations, two strategies can be used. The first one consists in a direct filter-
ing of the system of equations (35) and (36). This will lead to a system in which all phase quantities remain on
the right-hand side. The second possibility is to replace the right-hand side of the system of equations (35) and
(36) by the filtered quantities coming from the jump conditions (6) and (7).

The first strategy leads to the following subgrid scale terms4:

(1) Mass:
sk
rq ¼ qkðW � ukÞ � nkdi � akfqk akð eW � euk Þ � bnk ð47Þ
(2) Momentum:
sk
ruu ¼ ðqkuk � ðW � ukÞ � pk Idþ skÞ � nkdi � ðakfqk ak euk akð eW � euk Þ þ ak epk Idþ 2akflk akfSk

DÞ � bnk ð48Þ
r the terms appearing in the right-hand side of Eqs. (6) and (7), the notation (40) is no more convenient and is not respected.
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(3) Phase advection:
sk
rv ¼ W � nkdi � eW � bnk ð49Þ
These two modeling stages lead to the following set of equations:

(1) Mass:
oq
ot
þr � ðq�uþ slquÞ ¼

X
k

ðakfqk akð eW � euk Þ � bnk Þ þ
X

k

sk
rq ð50Þ
(2) Momentum:
oðq�uþ slquÞ
ot

þr � ðq�u� �uþ �p Id� lSD þ slquu þ sllSÞ � qg

¼
X

k

ððakfqk ak euk � akð eW � euk Þ þ ak epk Id� akflk akfSk
DÞ � bnk Þ þ

X
k

sk
ruu ð51Þ
(3) Phase indicator advection:
X
k

ð eW � bnk Þ þ
X

k

sk
rv ¼ 0 ð52Þ
In Eqs. (50) and (51), the first term on the right-hand side corresponds to the approximate jump condition,
using the filtered variables (see the left-hand side of Eqs. (6) and (7)). As a consequence, the closure of this
system requires: (i) the closure of all the subgrid scale terms and (ii) an approximate jump condition through
the interface.

The second strategy is to use the exact jump conditions given by Eqs. (6) and (7) to derive a new system of
filtered equations. Note that the commutation error between the filter and the surface derivatives cannot be
generally assumed to be zero. The generalized surface gradient and divergence are then defined as follows:
rsu ¼ ðId� n� nÞ � ru() crsu ¼ ðId� n̂� n̂Þ � ru ð53Þ
rs � w ¼ ðId� n� nÞ : rw() crs � w ¼ ðId� n̂� n̂Þ : rw ð54Þ
Then, the error committed in commuting the filter and the surface derivative will introduce new subgrid scale
error terms that have to be calculated.

In this case, the right-hand-side subgrid contributions are:

(1) Mass:
srq ¼ 0 ð55Þ
No contribution appears from the right-hand side for the mass conservation equation, in this case.

(2) Momentum:
srnn ¼ �rnrs � ndi þ rn̂crs � n̂ ð56Þ
srr ¼ rsr� crsr ð57Þ
This second strategy leads to a simpler set of equations

(1) Mass:
oq
ot
þr � ðq�uþ slquÞ ¼ 0 ð58Þ
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(2) Momentum:
oðq�uþ slquÞ
ot

þr � ðq�u� �uþ �p Id� lSD þ slquu þ sllSÞ � qg ¼ rn̂crs n̂� crsrþ srnn þ srr ð59Þ
or in using the mass-weighted filtered variable ~u:

(1) Mass:
oq
ot
þr � ðq~uÞ ¼ 0 ð60Þ
(2) Momentum:
oq~u
ot
þr � ðq~u� ~uþ �p Id� lSD þ sflquu þ sllSÞ � qg ¼ rn̂crs n̂� crsrþ srnn þ srr ð61Þ
This second formulation, more tractable, will be employed for performing the following applications.
4. Numerical methods

One of the main difficulties of this work consists in obtaining precise DNS results. Indeed, the numerical
method has to satisfy the mesh convergence condition: when the mesh resolution increases, the result of
the simulation has to tend towards the exact solution. Therefore, most of the numerical methods employed
for two-phase flow simulation do not fulfill this condition when surface tension is taken into account (see,
e.g., Scardovelli, 1999). In particular, the description of the interfacial area is often not precise enough to give
satisfactory results (see for instance Lebaigue et al. (1998) for an introduction to the different methods avail-
able). The Eulerian methods generally involve an approximate reconstruction of the interface, which leads to
an inexact modeling of the surface tension contribution. The original Front-Tracking method suffers from the
same problem since the interfaces are smeared (Hirt and Nichols, 1981; Juric and Tryggvason, 1998). These
approximations lead to the growth of purely rotational structures called parasitic currents, which do not
decrease as the mesh size becomes smaller (Brackbill et al., 1992). The Arbitrary Lagrangian Eulerian methods
(ALE) (see, Welch, 1995, for instance) allows these spurious currents to be avoided. However, this technique is
difficult to implement and still remains numerically too expensive to be employed to simulate complex phe-
nomena (boiling, mass transfer, break-up,. . .). Even if the issue of spurious currents is not discussed, the Eule-
rian level set/vortex sheet method proposed by Herrmann (2005) is very promising for the study of two-phase
flow in turbulent environment, specifically for atomization process. Some new formulations for the VOF
method (Gueyffier et al., 1999; Vincent et al., 2004b) and for the Front-Tracking method (Juric and Tryggva-
son, 1998; Mathieu et al., 2003) have been proposed in order to prevent spurious currents.

In this work, two test cases are considered (see following section). In the problem of the two counter-rotat-
ing vortices impacting a bubble, the Front-Tracking method of Mathieu et al. (2003), implemented in Trio_U
(see Calvin et al., 2002), will be used. This method is a dedicated ‘‘sharp interface’’ version of the Front-Track-
ing approach, which does not resort to usual explicit smoothing function of the interfaces. Since the interfaces
are not smeared, the method can accurately capture the turbulent transfer between the two phases. It was
assessed on many application tests comparing with analytical solutions (Mathieu, 2003). This original method
benefits from the VOF method for the calculation of the indicator function. Nevertheless, the interfaces are
explicitly described using a Lagrangian mesh, moving on an Eulerian mesh for the flux calculation as for
the classical Front-Tracking method. Each elementary surface (respectively segment) describing the interface
in 3D (respectively 2D) is designed with 3 (respectively 2) points. The displacement of these points follows the
law
dx
dt
¼ W ð62Þ
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which can be expressed using Eq. (6), as
W
X

k

qk ¼
X

k

nkðqkuk � nk � _mkÞ ð63Þ
An original discretization of the surface tension and gravity forces is used, in order to obtain an irrotational
discrete contribution of the sum of these terms in the momentum equation, leading to zero parasitic current.
An explicit Euler scheme for the time integration is used. A QUICK third order method is implemented for the
spatial discretization of the convection terms. The diffusion terms are discretized using a second order centered
scheme. The pressure is computed using a Cholesky method. A complete description of the numerical code
and the validation can be found in Mathieu et al. (2003) and Mathieu (2003).

In the second test case dedicated to the phase inversion in a closed box, the motion equations are approx-
imated by an implicit Finite-Volume method on a staggered mesh while an adaptative augmented Lagrangian
technique is investigated to solve the coupling between pressure and velocity in the equations of motion (Vin-
cent et al., 2004b). The spatial discretization of these Navier–Stokes equations is achieved through a second-
order Euler scheme, or GEAR scheme, on the time derivatives while a second order Hybrid Centered-Upwind
scheme is devoted to the non-linear convective terms and a second order centered scheme is chosen for the
approximation of the viscous and the augmented Lagrangian terms. An iterative BiCGSTAB II (Bi-Conjugate
Gradient Stabilized) solver, preconditioned under a Modified and Incomplete LU (MILU) algorithm, is
implemented to tackle with the linear system resulting from the previous implicit discretization. All the refer-
ences concerning the numerical methods can be found in Vincent and Caltagirone (2000).

The numerical simulations are run with a Piecewise Linear Interface Construction (VOF-PLIC) method of
Youngs (1982) using the Continuum Surface Force (CSF) method (Brackbill et al., 1992) for the treatment of
the surface tension.

Note that, with this numerical method, the evolution Eq. (33) for the void fraction replaces Eq. (63) for the
displacement of the interface in Front-Tracking. Without phase change, this equation degenerates into:
oak

ot
þ u � rak ¼ 0 ð64Þ
In filtering or averaging Eqs. (63) and (64), some specific subgrid terms appear, depending on the Lagrangian
or Eulerian characteristic of each approach. These terms depends on the numerical method employed and are
not considered in the present work.
5. Numerical experiments

The two selected cases are now studied, in order to estimate the relative weights of the different subgrid
scale terms of two-phase flow equations. It consists in a 2D DNS of elementary calculation cases that are rep-
resentative of the turbulent phenomena. The 2D DNS takes advantage of the relatively low cost of the calcu-
lations to make it possible to perform a parametrical analysis of the relative magnitude of the subgrid scale
contributions without loss of pertinence.

5.1. General physical assumptions

The following assumptions have been adopted (see for example Drew, 1983; Magnaudet, 1997) for all the
test cases presented afterwards:

(1) Only two phases are considered: this assumption does not formally simplify the equations. However, the
meaning of the jump conditions is much clearer with only two phases.

(2) The density is constant in each of the two phases: this condition does not really simplify the one-fluid
formulation, since q ¼

P
kv

kqk varies in space and time. Nevertheless, when added to the fourth assump-
tion, it allows the energy equation to be uncoupled from the rest of the system. Therefore, the energy
equation is not solved in the following test cases.
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(3) There is no mass transfer between the phases: this condition translates mathematically into _mk ¼ 0 which
is equivalent to W Æ nk = uk Æ nk. It considerably simplifies the system of equations (50)–(52). However, no
further simplification of system (58) and (59) is expected.

(4) The situations of interest are isothermal and without any chemical reaction: this condition allows l for
each phase and r to be set as constants, since assuming respectively that the Sutherland and the Gibbs–
Duhem laws are valid, l depends only on the temperature and r depends on the temperature and the
chemical potential.

(5) There is no sliding between phases: the introduction of this assumption simplifies the one-fluid model
assuming the average velocity gradients to be equal at a given point and in each phase. Thanks to this
condition, we obtain the commutativity property between the filtering and the gradient operator. Thus,
interfacial subgrid terms can be neglected.

(6) The fluids are non-miscible: this assumption implies no mass diffusion. At a subgrid scale the diffusion is
only a consequence of the numerical scheme’s artifacts. This explains that no equation considering any
specific material property is solved but a kinematic relation bounding the interface velocity and the local
volume fraction, the advection Eq. (33). The definition of volume fraction dedicated to each phase also
allows an interface to be defined by ak = 0.5.

The phases that are considered in this work are air, water, viscous water and oil. Table 1 recalls their phys-
ical parameters.

Classical values of the surface tension at room pressure and temperature conditions are used for test case 1
(water–air, r = 0.07 N m�1) and test case 2 (viscous water–oil, r = 0.045 N m�1).

Two academic calculation cases are now presented, which are relevant of the specific problems of interface/
turbulence interaction. The first case accounts for the simpler model for turbulent structures interacting with a
bubble, and the second test case for interfacial turbulence, i.e. high Weber number flow producing subgrid
inclusions. These two cases are complementary and are representative of a wide range of problems going from
bubbly channels to breaking waves.

5.2. Test case 1: Impact of two counter-rotating vortices with a bubble

5.2.1. Definition

The objective of this first test case is to observe the effects of turbulence on the interface of a 2D bubble, and
the reciprocal influence of the interface on the behavior of the turbulence. For this case, there is no gravity
effect and the turbulence is idealized in the form of isentropic vortices. In order to keep the bubble motionless
without using any non-physical forcing term, two-counter-rotative vortices are used, interacting with each
other to go down to the bubble. This case is very relevant, especially for bubbly flows, because LES modeling
is useful when the smallest turbulent scales are much smaller than the interfacial scales. In this case, even if the
bubble interface is accurately discretized, active turbulent scales remain subgrid and have to be modeled. The
most energetic under-resolved coherent structures have then a size slightly lower than the one of the bubble.
These coherent structures are unpredictable vortices (see for instance the book of Batchelor (1974)). For
three-dimensional cases (and for barotropic fluid), the evolution of these vortices is mainly driven by two phe-
nomena: (i) the stretching of the vortex by the velocity field and (ii) the diffusion of the vortex thanks to the
viscosity. It is worth noting that the first phenomenon does not exist for two-dimensional flow. Nevertheless,
Table 1
Physical parameters for all the calculations

q (kg m�3) l (kg m�1 s�1) m (m2 s�1)

Air 1.3 2 · 10�5 1.54 · 10�5

Water 1000 10�3 10�6

Ratio air/water 1.3 · 10�3 2 · 10�2 15.4
Oil 900 10�1 1.1 · 10�4

Viscous water 1000 5 · 10�3 5 · 10�6

Ratio oil/viscous water 0.9 20 22
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this is expected not to be crucial for our purpose, that is sort the magnitude of the subgrid scale terms. That is
why the 2D interaction of the bubble with a vortex seems to us to be the more relevant test case for this work,
allowing a parametrical study thanks to the relatively low cost of the simulation. Moreover, in the case of bub-
bly flow, a wide part of the turbulent effects is produced by the wakes of the bubbles themselves, which are of
size slightly lower than the bubbles.

It is worth noting that this test case essentially mimics the integral scale of turbulence. To complete this
case, a study of the behavior of inclusions in a homogeneous isotropic turbulence would be of interest,
accounting for the Taylor microscale of the turbulence/interface interaction, but this is beyond the scope of
this paper.

Each vortex is initialized with the following equation:
V v ¼
uv

vv

� �
¼ w

2p
e0:5 1� r

Rvð Þ
2

� � �y þ yv

x� xv

� �
ð65Þ
where r2 = (x � xv)
2 + (y � yv)

2 and w, Rv, xv and yv correspond respectively to the angular velocity, the radius
and the coordinates of the center of the vortex.

The parameters used for the initialization of the study are presented in Fig. 1. For all the test cases, a
200 · 216 mesh is then used leading to a mesh size of 3 · 10�5 m.

This very simple configuration allows us to reproduce a wide range of interface–turbulence interactions in
modifying the parameters of the simulations. These parameters are summarized in Table 5.

5.2.2. Macroscopic behavior

The case (N0) accounts for a slightly disturbed interface. In the approximation of small disturbances, ana-
lytical results are available, which validates the calculation. The time-evolution of the isovalues of the vorticity
is plotted in Fig. 2. It can be seen that the shape of the interface is hardly deformed by the impact of the
vortices.

For the (Solid) case, the phase inside the bubble is characterized by a very high density and a very high
viscosity with respect to those of the liquid, and a very high surface tension. So, the bubble behaves like a solid
cylinder. The time-evolution of the isovalues of the vorticity is plotted in Fig. 3.
Fig. 1. Mean parameters used in the bubble/turbulence interaction test case.



Fig. 2. Time evolution of the isovalues of the vorticity and of the position of the interface.

Fig. 3. Time evolution of the isovalues of the vorticity and of the position of the interface (Solid case).

Fig. 4. Time evolution of the isovalues of the vorticity and of the position of the interface (N1 case).
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For the (N1) case, the bubble is much more distorted. The time-evolution of the isovalues of the vorticity is
plotted in Fig. 4.

For the three cases, the maximum of velocity is obtained for r = Rv and is equal to: VM = w/(2p). Each
vortex moves downward with a velocity determined by that of the other vortex, called Vvortex.
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It can be noted that the Kolmogorov length scale associated with this problem can easily be approximated
by
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gðtÞ � m1=2kxkmaxðtÞ
�1=2 ð66Þ
where x = $ · u is the vorticity vector. Indeed, g = e�1/4m3/4 and e � mru : ru � mkxk2
max.

For the (N0) case, the Kolmogorov scale g is initially three times smaller than the mesh size. This is not a
problem since the vorticity quickly decreases and g is largely greater than the mesh size when the vortices inter-
act with the bubble. Indeed, it can be demonstrated that the enstrophy freely decreases as the square of time
(Lesieur, 1990 for instance).

Here, the enstrophy D = h($ · u)2i is equal to the square of the instant vorticity (at least before the impact
of the vortices with the bubble). The time-evolution of the maximal vorticity is given in Fig. 5 and fits correctly
the 1/t law.

To validate the numerical methods, mesh convergence tests and comparison with theoretical results have
been undertaken (Lemonnier and Jamet, 2004).

The behavior of the bubble and in particular the correct estimate of the oscillatory frequencies for the test
(N0) allows us to validate the calculation of the capillarity forces (see Fig. 6 and Table 2). This figure shows
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Fig. 5. Evolution of the maximal vorticity – left: w = f(t), right w = f(1/t).

Fig. 6. Kinetic energy spectrum.



Table 2
Comparison between the eigen modes of the bubble and oscillatory behavior of Ec

pb Eigen
mode

Fb Eigen
frequency (Hz)

Fe Corresponding energy
peak frequency (Hz)

Fe � Fb (Hz) Ef Theoretical maximum
error (Hz)

3 52 52.2 0.2 2.7
4 82 82.5 0.5 6.8
5 105 116.6 11.6 13.6
6 152 154.3 2.3 23.8
7 187 195.1 8.1 38.1
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the spectral distribution of kinetic energy, computed through a Fourier transform. The scales containing the
most energy do not correspond with the vorticity time scale, but with the eigen mode of mechanical bubble
energy.

Indeed, an analytical calculation of the oscillations of a bubble in a 2D potential fluid (Lamb, 1993), gives
us the theoretical eigen frequency of an inclusion for a bubble lightly deformed (as it is the case for the test
(N0)):
x2
p ¼

pðp2 � 1ÞrP
kq

kR3
ð67Þ
Table 2 shows a comparison between the frequencies obtained using this analytical calculation and the high
energetic scale presented in Fig. 6. A simple theoretical evaluation of the maximal error that can arise when
proceeding to the Fourier transform of the energy signal can be obtained using the formula
Ef � F ðF dT þ OðF dT ÞÞ ð68Þ

where F is the targeted frequency, and dT is the sampling time.

This good agreement between these two frequencies implies that the ‘‘turbulent’’ high frequency kinetic
energy is transformed into low frequency surface energy. It also attests of the quality of the simulation.

This interesting feature can be attributed to the term rn Æ W$s Æ n. Moreover, the interface seems to enforce
the frequencies of this transformation to its own eigen modes. This means that the time scale
tp ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
kq

kR3

pðp2 � 1Þr

s
ð69Þ
seems to be the most important new one for modeling subgrid scale turbulent induced phenomena, since ener-
getic effects are often privileged in turbulence.

It is worth noting that this oscillatory behavior can alter the motion of the bubble, contributing in making it
hard to predict. Our experience show us that capturing the right motion of the bubble must then require a
modeling for the subgrid term srnn even if its weight is weak in the momentum equation.

To validate the other test cases, no analytical solutions are available. We have then performed mesh con-
vergence tests to validate the calculations. The convergence test for the case (N1) is presented in Fig. 7.

5.3. Test case 2: Phase inversion in a closed box

5.3.1. Definition

A complex phase inversion problem in a closed box is considered with highly deformed interface (high
Weber number). This test case is complementary to the previous one, studying a turbulent regime very peculiar
to two-phase flows, which can be called interfacial turbulence. A square oil inclusion of height L = 0.5 m is
initially located in the left corner of a square cavity full of viscous water of length H = 1 m. Gravity and sur-
face tension effects are taken into account. As L = H/2, the equilibrium heights of the oil and viscous water
layers after phase inversion are respectively H/4 and 3H/4 in two dimensions. Both phases are initially at rest
and no slip boundary conditions are imposed on the walls of the closed cavity.

The physical characteristics of oil and viscous water are those detailed in Table 1. The surface tension r is
0.045 N m�1. Based on the characteristic velocity u0 ¼

ffiffiffiffiffiffiffi
gH
p

¼ 0:99 m s�1, where g = 9.81 m s�2 is gravity, the
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Fig. 7. Mesh convergency (time evolution): (a) kinetic energy and (b) vertical coordinate.
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characteristic dimensionless numbers of the problem are the Weber and the Reynolds numbers (in oil and vis-
cous water respectively) defined by

• We ¼ ðqw�q0Þu2
0
L

r ¼ 1089,
• Rew ¼ qwu0L

lw
¼ 99000,

• Re0 ¼ q0u0L
l0
¼ 1455.

A convergence analysis has been performed to evaluate the effect of the mesh grid size on the physical solu-
tion as depicted in Fig. 9. Regular Cartesian 128 · 128, 256 · 256 and 512 · 512 mesh grids have been consid-
ered. The kinetic and potential energies and the volume ratio are the three physical characteristics studied.
They have been respectively non-dimensionalized by the maximum magnitude of the kinetic energy reached
during the calculation on the 512 · 512 grid,

R
X qgzdv and the total volume of the cavity. Whatever the char-

acteristic investigated, the physical solution appears to converge as the mesh grid size gets finer. As a conse-
quence, this numerical exercise is a DNS as no explicit turbulence model is considered and the physical
solution has converged. Nevertheless, depending on the numerical properties of the VOF methods, the smaller
interface structures are of the order of Dx. Thus, refining the mesh grid will induce an increase of small drop-
lets generation, this, in turn, having no influence on the general solution.

The flow induced by the action of the buoyancy force due to oil inclusion in a cavity full of viscous water is
studied. Since the density difference effect is counteracted by the viscous and surface tension forces, an
unsteady turbulent two-phase flow develops. This leads to strong interface shearing and stretching accompa-
nied with drop extraction and collapsing. The interest of this test case is the simplicity of its initial condition
and the complexity of the interface structures generated in terms of strong deformations, shear instabilities
and droplet coalescence (see Vincent et al., 2004a). In this regard, this case study is aimed at testing the ability
of the numerical method to simulate turbulent two-phase flows with large and dynamic interface deforma-
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tions. Due to the complexity of the flow, the detailed structure cannot be analyzed and compared to any ref-
erence solution. Moreover, the detailed time evolution of the transient phase may be not completely resolved
at each time step due to the fine structure of the eddies that are produced. The second asset of the problem is
the existence of a theoretical solution for sufficiently long times concerning the exact position of the interface,
which corresponds to a horizontal oil layer in the top part of the cavity and a horizontal viscous water layer in
the bottom part of the square box. At equilibrium, the two fluids are separated by a horizontal interface and
its position only depends on the initial volumes of the fluids. In this regard, this test case is particularly rel-
evant to test the ability of a numerical code to conserve mass and volume even for very large and complex
interface deformations. To finish with, the independence of the steady solution of the phase inversion problem
on the physical parameters such as density, viscosity or surface tension allows various numerical methods and
physical configurations to be dealt with.

5.3.2. Macroscopic behavior

Fig. 8 illustrates the temporal evolution of the two phases. The very unstable initial configuration induces
the development of Rayleigh–Taylor-like instabilities. According to the theory of the instabilities, the critical
value of the wavelength below which the surface tension damps the instability of the structures is given by
Chandrasekhar (1981)
kc ¼ 2p
r

gðqw � q0Þ

� 	1=2

¼ 0:04m ð70Þ
This means that even very small drops remain unstable in this flow, which leads to a great shear (4th sub-figure
4.5 s to 7th sub-figure 22.25 s, of Fig. 8). The theoretical terminal velocity of an inclusion of oil in the viscous
water is proportional to qw�q0

qw
Harper (1972), and is then quite small. This partly explains why the steady state

is very long to reach. In addition, as already explained in Section 5.3.1, a high number of droplets are gener-
ated (Fig. 8).

Figs. 9 and 13 represent the temporal evolution of some macroscopic quantities for the two phases while the
enstrophy is given in Fig. 10. The initial configuration of the two phases is highly unstable, and the capillarity
term acts as a source of enstrophy. Thus, both the total enstrophy (that is the square of the vorticity integrated
over the whole domain) and kinetic energy increase at the beginning of the calculation as the oil inclusion
starts to migrate. The maximum magnitudes in both fluids are reached at a time around 5 s, which corresponds
to the highest shear rate of the two-phase flow. As depicted in Fig. 8, the oil phase remains in one major piece
at t = 4.5 s and from this time, it stretches and breaks up in many small droplets (t = 6.25 s). This process cor-
responds to a dramatically decrease of the kinetic energy and enstrophy until around t ’ 20 s. Indeed, the
major part of the oil phase has reached the top of the box and an oscillatory momentum is established in
the cavity, more and more damped by the oil layer. This dynamics can be clearly seen in Fig. 13 where the
potential energy and the volume ratio evolutions are presented. It can be observed that around t ’ 20 s, nearly
all the oil phase is in the upper quarter part of the domain whereas the water phase is contained in the rest of
the box. The temporal evolution of the potential energy clearly indicates that both phases reach a state of equi-
librium at the end of the inversion process.

6. A priori comparison of the order of magnitude of the different subgrid-scale terms

In this section, some a priori tests are undertaken, in order to sort the different subgrid scale terms of the
two-phase flow equations according to their relative importance. The main idea is to explicitly filter the equa-
tions to examine the relative quantitative impact of the different non-linear terms in the equations in the under-
resolved case.

The top-hat filter is used following the idea of Vreman et al. (1995) in order to explicitly obtain the mag-
nitude of the error terms

oslqu

ot , $ Æ slquu, $ Æ sllS and srnn. The kernel of this filter is given by
GðzÞ ¼
1

DXDY if z 2 ½�DX=2;DX=2� � ½�DY =2;DY =2�
0 otherwise



ð71Þ



Fig. 8. Quasi-direct numerical simulation of the phase inversion problem in two-dimensions for oil and viscous water. With
Dx = 3.91 · 10�3 m, the results show the interface profiles. The computation is stopped after thousands of iterations. For longer times, a
steady state with two horizontal layers should be obtained.
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In the following, the field is filtered over the DNS fine mesh. For a given variable u at a given position (xk,yl)
of the 2D mesh, the resulting filtered field u is
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Fig. 9. Temporal evolution of macroscopic characteristics of the phase inversion problem – left column: water, right column: oil, from top
to bottom: kinetic energy (log scale), potential energy and ratio between phase volume in the 1/4 upper cavity and total volume. h:
128 · 128 grid, m: 256 · 256 grid, w: 512 · 512 grid.
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Fig. 10. Temporal evolution of enstrophy of the phase inversion problem – n: water, h: oil.

Fig. 11. Calculation of z-component of velocity tensor slquu with FiSm top-hat filtering.
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u ¼ 1

ð2 	 ni þ 1Þ 	 ð2 	 nj þ 1Þ
Xni ;nj

i¼�ni;j¼�nj

uðxkþi; ylþjÞ ð72Þ
where ni and nj account for the size of the filter, and verify the identity:
ð2ni þ 1ÞDx ¼ DX ð73Þ
ð2nj þ 1ÞDy ¼ DY ð74Þ
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Fig. 12. Temporal evolution of interfacial lengths depending on the size of the filter.
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6.1. Bubble test case

Four filter sizes (Huge, Large, Average, Small) are considered and applied to the previously described test
cases. The first filter FiSm corresponds to a correctly resolved solution in terms of turbulence and interface
LES. The second filter FiAv corresponds to a poorly resolved solution in terms of turbulence and correctly
resolved in terms of interface LES. The third filter FiLa corresponds to a subgrid scale turbulence while under
resolved interface LES. The last filter FiHu corresponds to subgrid scale bubble and turbulence. It is an inter-
esting filtering size, since lot of recent papers use a filtering size at least two times bigger than the bubble size
for the simulations (see, for instance, Lakehal et al., 2002).

The a priori test is at first carefully carried on the previously presented configurations. The sizes of the filters
(equal to DXDY, see Eq. (71)) employed are summarized in Table 3, in comparison with the surface corre-
sponding to the mesh size of the DNS (DxDy), of the bubble (Rb) and of the ‘‘turbulent structures’’ (Rv). A
similar table (Table 6) summarizes the corresponding filtering sizes for the phase inversion test case.

Before analyzing the magnitude of the different subgrid scale terms, we want to check that the commutation
error is close to zero. Indeed, this error, only localized near the interface, remains clearly negligible in com-
parison with the maximum of the filtered convectionr � qu� u. This small error is concentrated on the border
of the filtering box. More generally, the calculation of the errors over the very fine DNS mesh, implies some-
times a false discontinuous feeling for the error field, which is only due to the high gradients involved.

The evolution of the maximal norm of the different subgrid-scale contributions with the time is plotted in
Figs. 14 and 15 for the different sizes of the filter and for the test case (N0) of the slightly deformed bubble.

Before the impact, $ Æ slquu is largely dominant compared to any other subgrid scale terms and whatever the
filter size, which is a usual conclusion for single-phase turbulence. In this configuration, all the error terms
except $ Æ slquu can be ignored. In the case FiLa and FiHu, the maximum initial value of $ Æ slquu is close to
1, meaning that the strong velocity gradients are very insufficiently resolved. That is not astonishing since
the vortices are almost subgrid in these two cases. Figs. 14 and 15 give general information about the relative
magnitude of the different terms. The temporal interval [0.003, 0.004] corresponds to the time when vortices
are generated in the gas phase and initial vortices are split apart and begin to roll along the interface of
the bubble (see the third and fourth images of the set Fig. 2). This topological transformation leads to a jump
of the term $ Æ slquu in the case FiSm. In the much coarser FiLa case, these very large values of $ Æ slquu persist
during the calculation. The contribution of the diffusion is the second one, in terms of magnitude, in the well-
resolved case FiSm. In the other cases, the term

oslqu

ot is of great importance, in that it is bigger than the diffu-
sion. In the cases for which the interfaces are correctly resolved, that are FiSm and FiAv, the interfacial



Table 3
The four sizes of the filter

Filter DXDY
DxDy

� �1=2
DXDY

R2
v

� �1=2
DXDY

R2
b

� �1=2

FiSm (small) 5 0.19 0.1
FiAv (average) 21 0.75 0.4
FiLa (large) 41 1.5 0.8
FiHu (huge) 201 7.5 4

Fig. 13. Temporal evolution of macroscopic characteristics of the phase inversion problem from left to right and from top to bottom:
enstrophy, kinetic energy, potential energy and ratio between phase volume in the 1/4 upper cavity and total volume. h: oil, n: viscous
water.
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induced term srnn is close to zero and clearly negligible. However, in the other cases FiLa and FiHu, it is of the
same order as diffusion.

In the case FiHu, all the flow is entirely subgrid, and then $ Æ slquu is always equal to the filtered convection
term r � qu� u (and then equal to 1 when normalized). The interest focuses on the relative magnitude of the
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other quantities. The magnitude of the diffusion $ Æ sllS increases but stays one order smaller in comparison to
convection. The srnn term is of the same order as the diffusion, but has an oscillatory behavior in agreement
with the previous observations (see Section 5.2.2). Compared to FiLa, the magnitude of this term is quite low.
This can be explained because the bubble is completely subgrid. Thus, considering the geometric nature of the
term srnn, we believe that the contributions of all the vectors srnn over the spherical bubble compensate each
other. The contribution of

oslqu

ot is of the same order of magnitude but slightly lower than the other ones. This
surprisingly low value, in comparison with those obtained for FiLa for instance, lead us to conclude that sym-
metry effects reduce the order of magnitude of this term too.

The classical hierarchy of the subgrid scale terms seems to be respected for this case, and Table 4 summa-
rizes these conclusions (the framed term vanish if the mass-weighted filtering process is used).

It is worth noting that when the turbulence (vortices) is mainly subgrid, we can write: r � qu� u ¼ r � slquu

and r � s ¼ r � sllS , in our case with no main stream.
To give more credit to these conclusions, a parametrical analysis has been undertaken thanks to the cases

(N1) and (Solid).
It is worth noting that the bubble is much more distorted for the (N1) case than in the previous case. In the

(Solid) case, the vortices rebound on the surface of the bubble. Strong strain is observed when the vortices
encounter the bubble. The vortices are split apart and do not interact with each other anymore. Then, they
disappear progressively thanks to the dissipation.



-0.04

-0.02

0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

0  0.001  0.002  0.003  0.004  0.005  0.006  0.007

(i
nt

en
si

ty
)

(distance)

.
luu

τ
Diffusionx

-0.15

-0.1

-0.05

0

 0.05

 0.1

0  0.001  0.002  0.003  0.004  0.005  0.006  0.007

(i
nt

en
si

ty
)

(distance)

.
luu

τ
Diffusionx

Fig. 16. Components of the acceleration: left: x component, right: y component – plain line: $ Æ slquu, symbols: diffusion.
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The evolution of the maximal norm of the different subgrid-scale contributions with the time is plotted in
Figs. 21–23 for different sizes of the filter and for this new cases.

The first noticeable conclusion of this parametrical study lies in the astonishingly high value of the term
oslqu

ot
for the case (N1). This is probably due to the low order of the time filtering derivative, which uses an Euler
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scheme. It seems that
oslqu

ot increases with the deformation rate of the shape of the bubble. Except for this term,
most of the previous conclusions can be retrieved. The Kolmogorov scale being larger in these cases, and the



Table 4
Classification of the terms in the momentum equation for different filtering sizes

Category FiSm FiAv FiLa FiHu

Large r � qu� uþ p r � qu� uþ p r � qu� uþ p r � qu� uþ p
$ Æ slquu $ Æ slquu $ Æ slquu

Medium $ Æ slquu
oslqu

ot
oslqu

ot
r � s

Small
oslqu

ot r � s r � s r � s
$ Æ sllS $ Æ sllS $ Æ sllS $ Æ sllS

srnn

Negligible srnn srnn srnn
oslqu

ot

Table 5
Parametrical differences with the reference case

xmax(t = 0) Rv(t = 0) VM(t = 0) g(t = 0) Vvortex

N0 30,000 4 · 10�4 12.52 10�5 2.54
N1 600 8 · 10�4 0.77 6 · 10�5 0.2
Solid 30,000 4 · 10�4 12.52 10�5 2.54
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Fig. 21. Comparison between the maximal norm of srnn2 (plain line) and srnn (symbols).
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mesh used being the same as in the previous calculation, the vortices are never completely subgrid, but in the
case of the filter FiHu. For the two cases, the jump of $ Æ slquu is present, corresponding to the impact of
the vortices with the bubble. The oscillatory behavior of the $ Æ slquu term, which is particularly noticeable
on the right of Fig. 22 corresponds to the vortices frequency. This frequency decreases abruptly when the
vortices impact the bubble, which corresponds to a more coherent turbulence.

In the (Solid) case, it can be observed that the mechanical energy decreases more quickly than in the bubble
case. This means that part of the energy is stored in the deformable bubble interface and not in the solid one.
Moreover, all the subgrid terms except $ Æ slquu are negligible. The comparison of the evolution of this term for
the first case and the (Solid) case is presented in Fig. 24. It is observed that the behavior of $ Æ slquu differs
clearly. Until impact with the bubble, the behavior of the two curves is very similar. When impacting the bub-
ble, the production of subgrid scale term $ Æ slquu is even stronger in the bubble case. However, after the
impact, the continuity of the velocity through the interface seems to contribute to maintaining a high level
of $ Æ slquu in the first case, while it decreases quickly in the (Solid) case. On the other hand, the order of mag-
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Table 6
The four sizes of the filter

Filter DXDY
DxDy

� �1=2

FiSm (small) 2
FiAv (average) 4
FiBi (big) 8
FiLa (large) 16
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nitude of diffusion is greatly increased by the impact and becomes quickly bigger than the $ Æ slquu in the
(Solid) case. We then retrieve, as for the energy comparison, that the deformation of the interface stores
the energy, which is then dissipated much slower.

6.2. Phase inversion test case

In this section, the same top-hat filter is implemented as detailed in Eq. 71 and a ‘‘phase-weighted’’ filtering
is applied to the fields (Eq. 37). The sizes of the filtering kernels are detailed in Table 6. Moreover, all the ten-
sor magnitudes are normalized by the time maximum for the 2D-plots (Figs. 11 and 25–28) and by the max-
imum tensor magnitude at each considered time for the spatial averaged tensor values (Tables 7–9).

As previously, four different sizes of the filter are proposed, from a 2 · 2 stencil up to a 16 · 16 stencil. One
example of subgrid error tensor corresponding to the smallest filter size is presented in Fig. 11. As expected,
the larger the filter is, the greater the magnitude of the subgrid tensors is. A close inspection of the local vari-
ations of the different tensor magnitudes reveals the highest values are located near the interfaces whereas a
homogeneous, but non-zero, behavior is observed within the two phases. It is also observed that even in highly
turbulent areas located in oil or viscous water and when turbulence reaches its maximum, the magnitudes of
the subgrid tensors are smaller than the values at the interface.

Tables 7 and 8 summarize the differences corresponding to these 2D views. Clearly, the mixing process leads
to higher gradient in the z-direction (gravity) than in the x-direction, and thus to higher values of the subgrid
accelerations in this direction. In this case, capillarity and diffusivity are the driving mechanisms, and the cor-
responding subgrid terms srnn are almost of the same order of magnitude as slquu for the smaller filter sizes. For-
tunately, the classical slquu subgrid terms remain dominant, at least when the field is highly unsteady. Indeed,
the values of srnn are surprisingly high at the end of the calculation, when only small droplets of oil subsist. It
can be deduced that the capillary term is proportional to the curvature, which is higher when the inclusions are
small, whereas the convection term is proportional to the velocity, which is small for small droplets.

The evolution of the order of magnitude of the different subgrid terms with the filter size is presented in
Table 8 for the time t = 2.25 s. As expected, the magnitude of the slquu term increases with the filter size.
On the contrary, the magnitude of srnn decreases with the filter size. The explanation is that many inclusions
are completely subgrid when the filter size is large. Thus, as already stressed before, symmetry consideration
on the subgrid error makes the integral contribution lower than if a smaller filter size5 is considered.

Table 9 sorts the mean tensor magnitudes into 4 categories equally balanced between 0.01 and 1. As pre-
viously observed and as expected, the inertial tensor becomes predominant as soon as the filter size grows. On
the contrary, the surface tension tensor is large for the smaller filter while it decreases to a weaker influence. As
a matter of fact, at instant t = 9.75 s, numerous small droplets are advected in the flow, and thus tend to van-
ish as they become subgrid. The behavior described previously remains true as long as the flow is turbulent
(t 6 30 s in this case), while, as shown for example in Table 8, only the surface tension tensor is significant
as the turbulence vanishes.

To finish with, the interfacial area is a major parameter controlling mass and energy transfers in two-phase
flows. It is a quantity used in to close most of the statistical two-phase turbulence models (see for instance the
works of Prince and Blanch (1990), Yao and Morel (2004)) and has to be considered in this work. Whereas the
subgrid rate of interfacial area is nearly zero (less than 0.1%) in the previous test case with weakly disturbed
5 With no subgrid inclusion.



Fig. 25. Calculation of velocity tensor slquu with FiSm top-hat filtering (left column: x-component, right column: z-component).
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interface, it is not the case in this capillarity driven test case. Its temporal evolution has thus been considered
here. As soon as filter based turbulence models will be implemented to simulate two-phase flows, the effect of



Fig. 26. Calculation of viscosity tensor sllS with FiSm top-hat filtering (left column: x-component, right column: z-component).
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the filtered scale on the interfacial area is investigated in Fig. 12. As expected, the larger the size of the filter is,
the smaller the interfacial area is. Quantitatively, a FiSm filtering induces a 25% loss of maximum interfacial



Fig. 27. Calculation of surface tension tensor srnn with FiSm top-hat filtering (left column: x-component, right column: z-component).
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length of the DNS one whereas a FiHu filtering decreases the magnitude to 90%. When standard single-phase
LES turbulence models will be used, the huge effect of the filtering on the interfacial area will be responsible of



Fig. 28. Spatial filtering of the z-component of velocity tensor slquu. The results are presented at instant 2.25 s.

Table 7
Range evolution of tensor magnitude for instants t = 2.25, 9.75, 100 s

Filter size Time (s)

2.25 9.75 100

FiAv FiBi FiAv FiBi FiAv FiBi

slquu (x-component) 0.368 0.785 0.254 0.660 0.018 0.030
slquu (z-component) 0.567 1 0.453 1 0.020 0.032

sllS (x-component) 0.087 0.103 0.066 0.087 0.015 0.016
sllS (z-component) 0.231 0.222 0.148 0.180 0.020 0.022

srnn (x-component) 0.618 0.510 0.558 0.542 0.247 0.238
srnn (z-component) 1 0.813 1 0.957 1 1
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dramatic differences between DNS and LES simulations of two-phase flows. A specific attention will have to
be paid to integrating a resolved subgrid volume fraction in interface tracking methods in order to add explicit
modeling of interfacial subgrid tensors taking into account the filtered interfacial areas.



Table 8
Evolution of tensor magnitudes at time 2.25 s for several spatial filtering sizes

Spatial filtering FiSm FiAv FiBi FiLa

slquu (x-component) 0.0931 0.368 0.785 0.819
slquu (z-component) 0.285 0.567 1 1

sllS (x-component) 0.055 0.0867 0.103 0.052
sllS (z-component) 0.202 0.231 0.222 0.110

srnn (x-component) 0.625 0.618 0.510 0.225
srnn (z-component) 1 1 0.813 0.355

Table 9
Classification of the terms in the momentum equation for different filtering sizes at time t = 9.75 s

Category FiSm FiAv FiBi FiLa

Large srnn,x srnn,z srnn,x srnn,z srnn,x srnn,z slquu,x slquu,z

slquu,x slquu,z

Medium slquu,x slquu,z slquu,x slquu,z sllS,z srnn,x srnn,z

sllS,z sllS,z

Small sllS,z sllS,x sllS,x sllS,x

Negligible sllS,x
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6.3. Modeling attempts

To conclude this study, some modeling attempts have been made to handle the particular behavior of the
turbulence at the vicinity of the interfaces. It can be seen that in using �u (volume filtering process), the momen-
tum transfer is widely overestimated, whereas it is underestimated in using ~u (mass-weighted filtering process).
It is illustrated with Fig. 17. Thus, it is demonstrated that the use of ~u is recommended for two-phase flow
turbulence modeling. At first, the error term slqu becomes zero in using ~u. Moreover, the method is less dif-
fusing than in using �u, what is easier to model.

It seems necessary, since the behavior of the main subgrid contribution $ Æ slquu is clearly unusual. Fig. 16
shows the x and y components of $ Æ slquu and of the diffusion term, for the FiSm filter and for the (N0) case.

These graphics are extrapolated from the values on the black line materialized in Fig. 17. It is worth noting
that the peak of the diffusion term is mainly in the liquid phase, whereas, surprisingly, the $ Æ slquu contribution
reaches a maximum in the gas phase. This means that the subgrid dynamics cannot correctly be mimicked by
the stress tensor only. Moreover, the temporal evolution of the subgrid terms is not correctly reproduced by
that of the diffusion term, in particular for the jump of $ Æ slquu when vortices are impacting the bubble (see the
left part of Fig. 14). In fact, it appears clearly that the high level of error in the gas phase corresponds to a too
high diffusion of the kinetic energy through the interface, thanks to the convection term.

Due to the one-fluid formulation, the momentum of the gas phase is spuriously transmitted to the liquid
phase, because of the continuity of the velocity. That means that kinetic energy is immediately transmitted
to the liquid phase of the calculation cells. It is worth noting that this feature is not sensitive for the steady
states or for the very fine meshes, since the real characteristic time of kinetic energy transfer scales in l2/m.
At the contrary, it is a very important feature in the case of highly unsteady flows and coarse meshes. The
use of the mass-weighted average allows to drastically lowering this over-diffusivity, even implying an
under-estimated diffusion rate. It can be easily corrected in adding a turbulent viscosity to the molecular vis-
cosity in the momentum equation.

These conclusions can be completed with an energetic analysis. In order to perform this analysis, let decom-
pose the action of slquu into a conservative part and a non-conservative part in order to obtain the resolved
kinetic energy balance6:
6 For the sake of simplicity, all subgrid terms but slquu have been neglected in this equation, and the overlines, tildes and hats are omitted.
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þr � ððecuÞÞ þ u � rp �r � ðs � uÞ þ s : ru�r � ðslquu � uÞ þ slquu : ru ¼ �rn � Wrs � ndi ð75Þ
The idea of the Boussinesq analogy for the turbulence is to consider that the main effect of the subgrid scale
turbulence is of dissipative nature. The only subgrid term able to modify the global kinetic energy is slquu : $u

which is the counterpart for the subgrid tensor of the dissipation lS : $u. These two terms (slquu : $u and
lS : $u) are plotted in Fig. 18.

The left-hand-side of Fig. 18 shows the spatial profile of the dissipation. The highest peak is located in the
vicinity of the interface at the top of the bubble. A second one is close to the center of the vortex in the liquid
phase (see Fig. 17), and a third (smaller) one is located close to the interface at the bottom of the bubble. The
right-hand-side of Fig. 18 shows the counterpart of the dissipation for the subgrid stress tensors obtained
using the volume filtering process (slquu) and the mass-weighted filtering process (sflquu). The first remark is that
the magnitude of these terms is one to two orders bigger than those of the dissipation, that is a classical feature
of turbulent flows. The behavior of these two terms seems similar, with a first positive peak near the interface
at the bottom of the bubble, and a negative peak near the interface at the top of the bubble. There is then a
positive peak in the liquid phase. The negative peak in the vicinity of the interface is much bigger in the volume
filtering case. It corresponds to an over-diffusivity of the kinetic energy of the liquid phase into the gas phase,
what is strengthened by the peak in the liquid phase. This behavior is similar to what is observed for particle-
laden flow (see Boivin et al., 2000).

Finally, the equivalent eddy-viscosity has been computed for this two filtering process, and compared with
several classical closure models. The equivalent eddy-viscosity is calculated the following way:
lt ¼
slquu : ru

S : ru
ð76Þ
considering that an eddy-viscosity assumption implies that slquu = ltS : $u. These results are plotted in Fig. 19.
Large eddy simulation is not suited for 2D flows because there is generally no energy cascade. However, the

viscosity models do not naturally cancel in the limit of two-dimensional flows, and then comparison with the
subgrid scale models give interesting pieces of information on the modeling process even in this case.

Obviously, the behavior of the equivalent lt matches those of the contribution of the subgrid tensors to the
total kinetic energy balance (see Fig. 18), and the so-called viscosities obtained this way are locally negative
close to the interface at the top of the bubble.

The negative part of the equivalent lt is by far bigger when the volume filtering process is employed. Never-
theless, for the positive part of equivalent lt, the two curves merge. The negative part of this a priori closure

demonstrates that eddy-viscosity models are inadequate to model the subgrid scales in two-phase flows and that
a dispersive phenomenon is of great importance. This is confirmed by the profiles of classical closure models
based on an eddy-viscosity assumption. The Smagorinsky (Smagorinsky, 1963), the Wale (Nicoud and Ducros,
1999) and the Mixed-Scale models (Sagaut et al., 1999) are plotted in Fig. 19 and show similar behaviors and
orders of magnitude, but obviously fail in mimicking the negative part of the equivalent lt. Nevertheless, Boivin
et al. (2000) succeed in obtaining the right behavior of the eddy-viscosity in using mixed Bardina-like–Smago-
rinsky-like models (Bardina et al., 1983) a.k.a. the sum of a scale-similarity model and an eddy-viscosity
assumption model. This model is also plotted in Fig. 19, and shows great improvements in modeling the equiv-

alent lt (mass-weighted), in particular in the negative part, whereas the positive peaks do not match perfectly.
This model seems to be a good preliminary choice to perform LES on two-phase flow configuration.

Fig. 20 shows the correlation between the previously proposed Bardina-like–Smagorinsky-like mixed model
and the real DNS contribution on every cell of the FiSm coarse grid for the cases (N1). The error committed in
using this model is less than 20% everywhere. That is close to the results obtained for single-phase flows by
Horiuti (1997) (Figs. 11 and 25–28).
7. Conclusions

This original study is a preliminary step towards complete modeling of the interaction between interface
and turbulence. The governing equations for under-resolved systems have been fully written and discussed
for both RANS and LES approaches. In particular, specific multiphase terms have been exhibited.
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Academic test cases mimicking the turbulence–interface interaction have been simulated. A special Front-
Tracking method has been used for modeling the test case of vortices impacting on a bubble. A VOF approach
has been adopted for the test case of the phase inversion in a closed square box. A phenomenological analysis
of the evolution of the kinetic energy shows the importance of the interfacial terms in the turbulent behavior.
The interface absorbs a part of the turbulent high-frequency energy and releases it at a lower frequency due to
the interface oscillations. It is also shown that the interface can be considered in a sense as a deformable wall,
at least if only one of the two phases is considered. Nevertheless, turbulence can be carried from one phase to
another through the interface.

A priori tests have been conducted to provide information on the order of magnitude of the subgrid terms
that arise with under-resolved calculation (RANS, LES). The relative importance of these terms has been care-
fully compared. The strategy consists in filtering the results of a DNS in order to provide the error terms that
have to be modeled in RANS or LES approaches. Four different sizes of filter have been used on undisturbed,
weakly disturbed and strongly deformed interfaces. The main conclusion is that the most important term
remains the inertia term as in single-phase flows. However its behavior is clearly different close to the interface
and can no longer be modeled with a viscosity assumption. This important conclusion has to be moderated if
the mass-weighted filtering process is employed. This process is highly recommended for the modeling of tur-
bulence in two-phase flows, when it is possible. The other terms are weaker, but not negligible compared to the
diffusion term. It is also stated that the behavior of turbulent structures and subgrid scale terms is very differ-
ent when solid surfaces are considered. At impact, the production of turbulence is stronger with solid bodies,
but is not maintained at a high level for a long time as with bubbles. Moreover, the jump of the diffusion in the
solid case when impacting the bubble is higher. It can be deduced that the bubble stores a part of the vortices’
energy.

When considering flows driven by capillarity and viscosity mechanisms, the conclusions have to be moder-
ated. The classical subgrid acceleration remains the dominant term, but the terms corresponding to the viscos-
ity jump, and the capillary forces are almost of the same order. That is not astonishing, since these flows are
mainly driven by capillarity effects, and are turbulent in another sense peculiar to two-phase flows (interfacial

turbulence). This implies very challenging new modeling processes beyond the scope of this paper. Nevertheless
a preliminary step for the modeling of the capillarity-induced term srnn is proposed.

The inertia subgrid term is compared, in term of diffusivity, with several classical subgrid models. A model
is provided which reproduce the correct behavior of the inertia subgrid term. A mixed Bardina-Smagorinsky
model gives very satisfactory results, far better than the eddy-viscosity based models, which fail to reproduce
the turbulence rate exchange.

Further works will focus on a priori tests on homogeneous isotropic turbulence and of classical single-phase
subgrid modeling in three-dimensional two-phase flows, in order to study the effect of the Taylor microscale
turbulence on interfaces. If none of the classical models give satisfactory results (what is expected in the case of
highly deformable interfaces), the development of two-phase specific flow models will become necessary. We
expect that a good modeling process will allow us to simulate more complex physics without using a true DNS
approach. Future research will focus on the production of quasi-turbulence by the bubble wakes, turbulent dis-
sipation in rollers when waves break on beaches (see Peregrine, 1983; Lubin et al., 2003), impinging turbulent
plane jets on liquid films (see Lacanette et al., 2002) and boiling flows (see Juric and Tryggvason, 1998).
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